Optimization of nutritional strategies using a mechanistic computational model in prediabetes: Application to the J-DOIT1 study data

Author:

Chen Julia H.,Fukasawa Momoko,Sakane NaokiORCID,Suganuma Akiko,Kuzuya Hideshi,Pandey Shikhar,D’Alessandro Paul,Venkatapurapu Sai PhanindraORCID,Dwivedi GauravORCID

Abstract

Lifestyle interventions have been shown to prevent or delay the onset of diabetes; however, inter-individual variability in responses to such interventions makes lifestyle recommendations challenging. We analyzed the Japan Diabetes Outcome Intervention Trial-1 (J-DOIT1) study data using a previously published mechanistic simulation model of type 2 diabetes onset and progression to understand the causes of inter-individual variability and to optimize dietary intervention strategies at an individual level. J-DOIT1, a large-scale lifestyle intervention study, involved 2607 subjects with a 4.2-year median follow-up period. We selected 112 individuals from the J-DOIT1 study and calibrated the mechanistic model to each participant’s body weight and HbA1c time courses. We evaluated the relationship of physiological (e.g., insulin sensitivity) and lifestyle (e.g., dietary intake) parameters with variability in outcome. Finally, we used simulation analyses to predict individually optimized diets for weight reduction. The model predicted individual body weight and HbA1c time courses with a mean (±SD) prediction error of 1.0 kg (±1.2) and 0.14% (±0.18), respectively. Individuals with the most and least improved biomarkers showed no significant differences in model-estimated energy balance. A wide range of weight changes was observed for similar model-estimated caloric changes, indicating that caloric balance alone may not be a good predictor of body weight. The model suggests that a set of optimal diets exists to achieve a defined weight reduction, and this set of diets is unique to each individual. Our diabetes model can simulate changes in body weight and glycemic control as a result of lifestyle interventions. Moreover, this model could help dieticians and physicians to optimize personalized nutritional strategies according to their patients’ goals.

Funder

JSPS KAKENHI

PricewaterhouseCoopers, LLP

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3