Empirical distributions of time intervals between COVID-19 cases and more severe outcomes in Scotland

Author:

Wood Anthony J.ORCID,Kao Rowland R.ORCID

Abstract

A critical factor in infectious disease control is the risk of an outbreak overwhelming local healthcare capacity. The overall demand on healthcare services will depend on disease severity, but the precise timing and size of peak demand also depends on the time interval (or clinical time delay) between initial infection, and development of severe disease. A broader distribution of intervals may draw that demand out over a longer period, but have a lower peak demand. These interval distributions are therefore important in modelling trajectories of e.g. hospital admissions, given a trajectory of incidence. Conversely, as testing rates decline, an incidence trajectory may need to be inferred through the delayed, but relatively unbiased signal of hospital admissions. Healthcare demand has been extensively modelled during the COVID-19 pandemic, where localised waves of infection have imposed severe stresses on healthcare services. While the initial acute threat posed by this disease has since subsided with immunity buildup from vaccination and prior infection, prevalence remains high and waning immunity may lead to substantial pressures for years to come. In this work, then, we present a set of interval distributions, for COVID-19 cases and subsequent severe outcomes; hospital admission, ICU admission, and death. These may be used to model more realistic scenarios of hospital admissions and occupancy, given a trajectory of infections or cases. We present a method for obtaining empirical distributions using COVID-19 outcomes data from Scotland between September 2020 and January 2022 (N = 31724 hospital admissions, N = 3514 ICU admissions, N = 8306 mortalities). We present separate distributions for individual age, sex, and deprivation of residing community. While the risk of severe disease following COVID-19 infection is substantially higher for the elderly and those residing in areas of high deprivation, the length of stay shows no strong dependence, suggesting that severe outcomes are equally severe across risk groups. As Scotland and other countries move into a phase where testing is no longer abundant, these intervals may be of use for retrospective modelling of patterns of infection, given data on severe outcomes.

Funder

Economic and Social Research Council

Roslin ISP2

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference38 articles.

1. Duration of protection against mild and severe disease by Covid-19 vaccines;N Andrews;New England Journal of Medicine,2022

2. Assessing the importance of demographic risk factors across two waves of SARS-CoV-2 using fine-scale case data;AJ Wood;medRxiv,2023

3. COVID-19 and Inequalities;R Blundell;Fiscal studies,2020

4. The COVID-19 pandemic and health inequalities;C Bambra;J Epidemiol Community Health,2020

5. Impact of COVID-19 outbreak by income: hitting hardest the most deprived;JM Baena-Díez;Journal of Public Health,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3