Lens-specific βA3/A1-conditional knockout mice: Phenotypic characteristics and calpain activation causing protein degradation and insolubilization

Author:

Joseph Roy,Robinson Michael L.ORCID,Lambert Laura,Srivastava Om P.ORCID

Abstract

βA3/A1-crystallin is a lens structural protein that plays an important role in maintaining lens transparency via interactions with other crystallins. While the function of βA3/A1-crystallin in the retina is well studied, its functions in the lens, other than as a structural protein, remain unclear. In the current study, we generated the lens-specific βA3/A1-crystallin conditional knockout mouse (named βA3/A1ckO) and explored phenotypic changes and the function of the crystallin in the lens. The βA3/A1ckO mice showed congenital cataract at birth and exhibited truncation of lens proteins. Several truncated protein fragments were recovered as a pellet during a low-speed centrifugation (800 rpm, 70 x g) followed by a relatively higher speed centrifugation (5000 rpm, 2744 x g). Mass spectrometric analysis of pellets recovered following the two centrifugations showed that among the fragments with Mr < 20 kDa, the majority of these were from β-tubulin, and some from phakinin, αA-crystallin, and calpain-3. Further, we observed that in vitro activation of calpain-3 by calcium treatment of the wild-type-lens homogenate resulted in the degradation of calpain-3, αA-crystallin and β-tubulin and insolubilization of these proteins. Based on these results, it was concluded that the activation of calpain 3 resulted in proteolysis of β-tubulin, which disrupted cellular microtubular structure, and caused proteolysis of other lens proteins (αA-crystallin and phakinin). These proteolyzed protein fragments become insoluble, and together with the disruption of microtubular structure, and could be the causative factors in the development of congenital nuclear cataract in βA3/A1cKO mice.

Funder

National Eye Institute

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3