Identification of key ferroptosis genes in diabetic retinopathy based on bioinformatics analysis

Author:

Huang Yan,Peng Jun,Liang QiuhuaORCID

Abstract

Objectives Diabetic retinopathy (DR) is a retinal microvascular disease associated with diabetes. Ferroptosis is a new type of programmed cell death that may participate in the occurrence and development of DR. Therefore, this study aimed to identify the DR ferroptosis-related genes by bioinformatics methods. Methods The RNAseq data of DR and healthy control retinas were downloaded from the gene expression synthesis (GEO) database and analyzed using the R package DESeq2. The key modules were obtained using the WGCNA algorithm, and their genes were intersected with ferroptosis-related genes in the FerrDb database to obtain differentially expressed ferroptosis-related genes (DE-FRGs). Enrichment analysis was conducted to understand the function and enrichment pathways of ferroptosis genes in DR, and hub genes were identified by protein-protein interaction (PPI) analysis. The diagnostic accuracy of hub genes for DR was evaluated according to the area under the ROC curve. The TRRUST database was then used to predict the regulatory relationship between transcription factors and target genes, with the mirDIP, ENCORI, RNAnter, RNA22, miRWalk and miRDB databases used to predict the regulatory relationship between miRNAs and target genes. Finally, another data set was used to verify the hub genes. Results In total, 52 ferroptosis-related DEGs (43 up-regulated and 9 down-regulated) were identified using 15 DR samples and 3 control samples and were shown to be significantly enriched in the intrinsic apoptotic signaling pathway, autophagosome, iron ion binding and p53 signaling pathway. Seven hub genes of DR ferroptosis were identified through PPI network analysis, but only HMOX1 and PTGS2 were differentially expressed in another data set. The miRNAs prediction showed that hsa-miR-873-5p was the key miRNA regulating HMOX1, while hsa-miR-624-5p and hsa-miR-542-3p were the key miRNAs regulating PTGS2. Furthermore, HMOX1 and PTGS2 were regulated by 13 and 20 transcription factors, respectively. Conclusion The hub genes HMOX1 and PTGS2, and their associated transcription factors and miRNAs, may be involved in ferroptosis in diabetic retinopathy. Therefore, the specific mechanism is worthy of further investigation.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3