2PNS++ point-cloud registration via hash of invariants and local compatibility check

Author:

Liu Hai,Wang ShulinORCID,Zhao Donghong

Abstract

In this research, we use hash match of invariants under fixed pair length and local compatibility check of positions or normal vectors to improve the efficiency of two-point normal set (2PNS) point cloud registration algorithm. On the one hand, we use the key value formed by the invariants of base point pairs of fixed length to construct and retrieve the hash table to realize the matching of base point pairs in the two point clouds to be registered to speed up the extraction of candidate transformation matrices. On the other hand, the time consumed in the verification phase is reduced by checking the compatibility between the positions or normal vectors of the corresponding points in the specific areas of the two point clouds under the transformation from the candidate matrix. Through these two improvements, the algorithm significantly reduces the time spent in the point cloud registration algorithm.

Funder

National Natural Science Foundation of China

the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province

Cooperation Fund of Yangzhou Government and College

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference26 articles.

1. A Method for Registration of 3-D Shapes;PJ Besl;IEEE Transactions on Pattern Analysis and Machine Intelligence,1992

2. Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm. In: Proceedings of International Conference on 3-D Digital Imaging and Modeling, 3DIM. IEEE; 2001. p. 145–152.

3. Robust Euclidean alignment of 3D point sets: The trimmed iterative closest point algorithm;D Chetverikov;Image and Vision Computing,2005

4. Park J, Zhou QY, Koltun V. Colored Point Cloud Registration Revisited. In: Proceedings of the IEEE International Conference on Computer Vision. vol. 2017-Octob; 2017. p. 143–152.

5. Point Set Registration With Similarity and Affine Transformations Based on Bidirectional KMPE Loss;Y Yang;IEEE Transactions on Cybernetics,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3