Design and synthesis of novel anti-urease imidazothiazole derivatives with promising antibacterial activity against Helicobacter pylori

Author:

Shahin Afnan I.,Zaib Sumera,Zaraei Seyed-Omar,Kedia Reena A.,Anbar Hanan S.,Younas Muhammad Tayyab,Al-Tel Taleb H.,Khoder GhaliaORCID,El-Gamal Mohammed I.ORCID

Abstract

Urease enzyme is a known therapeutic drug target for treatment of Helicobacter pylori infection due to its role in settlement and growth in gastric mucosa. In this study, we designed a new series of sulfonates and sulfamates bearing imidazo[2,1-b]thiazole scaffold that exhibit a potent inhibitory activity of urease enzyme. The most potent compound 2c inhibited urease with an IC50 value of 2.94 ± 0.05 μM, which is 8-fold more potent than the thiourea positive control (IC50 = 22.3 ± 0.031 μM). Enzyme kinetics study showed that compound 2c is a competitive inhibitor of urease. Molecular modeling studies of the most potent inhibitors in the urease active site suggested multiple binding interactions with different amino acid residues. Phenotypic screening of the developed compounds against H. pylori delivered molecules of that possess high potency (1a, 1d, 1h, 2d, and 2f) in comparison to the positive control, acetohydroxamic acid. Additional studies to investigate the selectivity of these compounds against AGS gastric cell line and E. coli were performed. Permeability of the most promising derivatives (1a, 1d, 1h, 2d, and 2f) in Caco-2 cell line, was investigated. As a result, compound 1d presented itself as a lead drug candidate since it exhibited a promising inhibition against urease with an IC50 of 3.09 ± 0.07 μM, MIC value against H. pylori of 0.031 ± 0.011 mM, and SI against AGS of 6.05. Interestingly, compound 1d did not show activity against urease-negative E. coli and exhibited a low permeability in Caco-2 cells which supports the potential use of this compound for GIT infection without systemic effect.

Funder

University of Sharjah

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference62 articles.

1. Structurally diversified heterocycles and related privileged scaffolds as potential urease inhibitors: a brief overview;A Ibrar;Archiv der Pharmazie,2013

2. Ureases as a target for the treatment of gastric and urinary infections;C. Follmer;Journal of clinical pathology,2010

3. Urease inhibitors as potential drugs for gastric and urinary tract infections: a patent review;P Kosikowska;Expert opinion on therapeutic patents,2011

4. Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets;KA Eaton;Infection and immunity,1991

5. Essential role of urease in vitro and in vivo Helicobacter pylori colonization study using a wild-type and isogenic urease mutant strain;M Karita;Journal of clinical gastroenterology,1995

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3