Evaluation of 6-OxP-CD, an Oxime-based cyclodextrin as a viable medical countermeasure against nerve agent poisoning: Experimental and molecular dynamic simulation studies on its inclusion complexes with cyclosarin, soman and VX

Author:

Lau Edmond Y.,Enright Heather A.,Lao Victoria,Malfatti Michael A.,Mayer Brian P.,Williams Audrey M.,Valdez Carlos A.ORCID

Abstract

The ability of the cyclodextrin-oxime construct 6-OxP-CD to bind and degrade the nerve agents Cyclosarin (GF), Soman (GD) andS-[2-[Di(propan-2-yl)amino]ethyl]O-ethyl methylphosphonothioate (VX) has been studied using31P-nuclear magnetic resonance (NMR) under physiological conditions. While 6-OxP-CD was found to degrade GF instantaneously under these conditions, it was found to form an inclusion complex with GD and significantly improve its degradation (t1/2~ 2 hrs) relative over background (t1/2~ 22 hrs). Consequently, effective formation of the 6-OxP-CD:GD inclusion complex results in the immediate neutralization of GD and thus preventing it from inhibiting its biological target. In contrast, NMR experiments did not find evidence for an inclusion complex between 6-OxP-CD and VX, and the agent’s degradation profile was identical to that of background degradation (t1/2~ 24 hrs). As a complement to this experimental work, molecular dynamics (MD) simulations coupled with Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) calculations have been applied to the study of inclusion complexes between 6-OxP-CD and the three nerve agents. These studies provide data that informs the understanding of the different degradative interactions exhibited by 6-OxP-CD with each nerve agent as it is introduced in the CD cavity in two different orientations (up and down). For its complex with GF, it was found that the oxime in 6-OxP-CD lies in very close proximity (PGF⋯OOxime~ 4–5 Å) to the phosphorus center of GF in the ‘downGF’ orientation for most of the simulation accurately describing the ability of 6-OxP-CD to degrade this nerve agent rapidly and efficiently. Further computational studies involving the center of masses (COMs) for both components (GF and 6-OxP-CD) also provided some insight on the nature of this inclusion complex. Distances between the COMs (ΔCOM) lie closer in space in the ‘downGF’ orientation than in the ‘upGF’ orientation; a correlation that seems to hold true not only for GF but also for its congener, GD. In the case of GD, calculations for the ‘downGD’ orientation showed that the oxime functional group in 6-OxP-CD although lying in close proximity (PGD⋯OOxime~ 4–5 Å) to the phosphorus center of the nerve agent for most of the simulation, adopts another stable conformation that increase this distance to ~ 12–14 Å, thus explaining the ability of 6-OxP-CD to bind and degrade GD but with less efficiency as observed experimentally (t1/2~ 4 hr. vs. immediate). Lastly, studies on the VX:6-OxP-CD system demonstrated that VX does not form a stable inclusion complex with the oxime-bearing cyclodextrin and as such does not interact in a way that is conducive to an accelerated degradation scenario. Collectively, these studies serve as a basic platform from which the development of new cyclodextrin scaffolds based on 6-OxP-CD can be designed in the development of medical countermeasures against these highly toxic chemical warfare agents.

Funder

Defense Threat Reduction Agency

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference71 articles.

1. U.K. attack puts nerve agent in the spotlight;R. Stone;Science,2018

2. Novichok compound poisoned Navalny;L. Howes;Chem Eng News,2020

3. Novichoks: The Dangerous Fourth Generation of Chemical Weapons;TCC Franca;Int J Mol Sci,2019

4. The Chemical Weapons Convention-Disarmament, science and technology;A Üzümcü;Anal Bioanal Chem,2014

5. Acute and Long-Term Impact of Chemical Weapons: Lessons from the Iran-Iraq War;DD Haines;Forensic Sci Rev,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3