Novel randomization and iterative based algorithms for the transactions assignment in blockchain problem

Author:

Bajahzar AbdullahORCID

Abstract

This study focuses on the load balancing of the transactions in the blockchain. The problem is how to assign these transactions to the blocks. The objective is to guarantee a load balancing of the workload in the time of blocks. The proposed problem is an NP-hard one. To face the hardness of the studied problem, the challenge is to develop algorithms that solve the problem approximately. Finding an approximate solution is a real challenge. In this paper, nine algorithms are proposed. These algorithms are based on the dispatching-rules method, randomization approach, clustering algorithms, and iterative method. The proposed algorithms return approximate solutions in a remarkable time. In addition, in this paper, a novel architecture composed of blocks is proposed. This architecture adds the component “Balancer”. This component is responsible to call the best-proposed algorithm and solve the scheduling problem in a polynomial time. In addition, the proposed work helps users to solve the problem of big data concurrency. These algorithms are coded and compared. The performance of these algorithms is tested over three classes of instances. These classes are generated based on uniform distribution. The total number of instances tested is 1350. The average gap, execution time, and the percentage of the best-reached value are used as metrics to measure the performance of the proposed algorithms. Experimental results show the performance of these algorithms and a comparison between them is discussed. The experimental results show that the best algorithm is best-mi-transactions iterative multi-choice with 93.9% in an average running time of 0.003 s.

Funder

Majmaah University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3