Evolutionary diversity of the endemic genera of the vascular flora of Chile and its implications for conservation

Author:

Ramírez-Verdugo PamelaORCID,Tapia Alexis,Forest Félix,Scherson Rosa A.

Abstract

As a direct consequence of global change, both natural and human-induced, a high percentage of biodiversity is now under threat worldwide. This has urged conservation planners to formulate and/or improve existing strategies to preserve species and their ecosystems. In this context, the present study focuses on two strategies using phylogeny-based measures of biodiversity to account for the processes that led to the biodiversity patterns observed today. It will contribute additional information that can aid decision-making regarding the assignment of threat status for some species, thus strengthening measures currently in use and facilitate the allocation of often scarce conservation resources. The Evolutionarily Distinct (ED) index prioritises species that are on long branches of the tree of life with few descendants, and the Evolutionarily Distinct and Globally Endangered (EDGE) index integrates evolutionary history with IUCN Red List threat status of species. It has been used mostly in animal groups, but since the threats faced by many plants have not been evaluated, it has been more difficult to compile for plants worldwide. Here, we apply the EDGE metric to species of the endemic genera of Chile. However, more than 50% of the endemic flora of the country are still lacking official threat status. We thus used an alternative measure (Relative Evolutionary Distinctness–RED), based on a range-weighted phylogenetic tree, which uses geographic ranges to adjust branch lengths, and calculate ED. The RED index was shown to be a suitable measure, yielding similar results compared to EDGE, at least for this group of species. Given the urgency to halt biodiversity loss and the time it would take to evaluate all species, we propose that this index is used to set conservation priorities until we can calculate EDGE for these unique endemic species. This would allow guiding decision-making until we can gather more data to assess and assign conservation status to new species.

Funder

fondo nacional de desarrollo científico y tecnológico

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3