Achieving clinically optimal balance between accuracy and simplicity of a formula for manual use: Development of a simple formula for estimating liver graft weight with donor anthropometrics

Author:

Ichihara NaoORCID,Sato NaoyaORCID,Marubashi Shigeru,Miyata Hiroaki,Eguchi Susumu,Ohdan Hideki,Umeshita Koji,Gotoh Mitsukazu

Abstract

In developing a formula for manual use in clinical settings, simplicity is as important as accuracy. Whole-liver (WL) mass is often estimated using demographic and anthropometric information to calculate the standard liver volume or recommended graft volume in liver transplantation. Multiple formulas for estimating WL mass have been reported, including those with multiple independent variables. However, it is unknown whether multivariable models lead to clinically meaningful improvements in accuracy over univariable models. Our goal was to quantitatively define clinically meaningful improvements in accuracy, which justifies an additional independent variable, and to identify an estimation formula for WL graft weight that best balances accuracy and simplicity given the criterion. From the Japanese Liver Transplantation Society registry, which contains data on all liver transplant cases in Japan, 129 WL donor-graft pairs were extracted. Among the candidate models, those with the smallest cross-validation (CV) root-mean-square error (RMSE) were selected, penalizing model complexity by requiring more complex models to yield a ≥5% decrease in CV RMSE. The winning model by voting with random subsets was fitted to the entire dataset to obtain the final formula. External validity was assessed using CV. A simple univariable linear regression formula using body weight (BW) was obtained as follows: WL graft weight [g] = 14.8 × BW [kg] + 439.2. The CV RMSE (g) and coefficient of determination (R2) were 195.2 and 0.548, respectively. In summary, in the development of a simple formula for manually estimating WL weight using demographic and anthropometric variables, a clinically acceptable trade-off between accuracy and simplicity was quantitatively defined, and the best model was selected using this criterion. A univariable linear model using BW achieved a clinically optimal balance between simplicity and accuracy, while one using body surface area performed similarly.

Funder

japan foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference23 articles.

1. Relationship between liver size and body size;FH DeLand;Radiology,1968

2. Calculation of child and adult standard liver volume for liver transplantation;K Urata;Hepatology,1995

3. Liver volume in patients with or without chronic liver diseases;XZ Lin;Hepatogastroenterology,1998

4. Standard liver volume in the Caucasian population;A Heinemann;Liver Transpl Surg,1999

5. Body surface area and body weight predict total liver volume in Western adults;JN Vauthey;Liver Transpl,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3