Abstract
Global Navigational Satellite System (GNSS) technologies are actively being developed to address the demand for enhanced positional accuracy. Smartphones are the most prevalent GNSS receiver today and have garnered attention thanks to improved positional accuracy and usability that can be accessed at an affordable price. In a forested environment, multipath error can deteriorate the positional accuracy, depending on the state of nearby vegetation. Therefore, this study was conducted to investigate the impacts of the size and location of vegetation on positional accuracy of GNSS receivers to determine whether the errors observed are systematic. Twenty-six control points within the Whitehall Forest GPS Test site in Athens, Georgia were used to evaluate positional accuracy of three different GNSS receivers (two traditional handheld GNSS receivers (including Garmin and Trimble receivers) and a smartphone). Thirty-five forest variables were developed from information around each control point to conduct a correlation analysis with observed horizontal position error in the positions determined by each device. In this study, we confirmed that the positional error of the smartphone was significantly lower than the Garmin receiver, and similar, but significantly different than the positional error observed by the Trimble receiver. It was confirmed that correlations between forest variables and horizontal position error regardless of the GNSS receiver employed were significant, yet trends were not consistent. The effect of the size of nearby trees on horizontal position error could not be generalized; however, the location of nearby trees on horizontal position error could.
Publisher
Public Library of Science (PLoS)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献