The effects of nearby trees on the positional accuracy of GNSS receivers in a forest environment

Author:

Lee TaeyoonORCID,Bettinger PeteORCID,Merry Krista,Cieszewski Chris

Abstract

Global Navigational Satellite System (GNSS) technologies are actively being developed to address the demand for enhanced positional accuracy. Smartphones are the most prevalent GNSS receiver today and have garnered attention thanks to improved positional accuracy and usability that can be accessed at an affordable price. In a forested environment, multipath error can deteriorate the positional accuracy, depending on the state of nearby vegetation. Therefore, this study was conducted to investigate the impacts of the size and location of vegetation on positional accuracy of GNSS receivers to determine whether the errors observed are systematic. Twenty-six control points within the Whitehall Forest GPS Test site in Athens, Georgia were used to evaluate positional accuracy of three different GNSS receivers (two traditional handheld GNSS receivers (including Garmin and Trimble receivers) and a smartphone). Thirty-five forest variables were developed from information around each control point to conduct a correlation analysis with observed horizontal position error in the positions determined by each device. In this study, we confirmed that the positional error of the smartphone was significantly lower than the Garmin receiver, and similar, but significantly different than the positional error observed by the Trimble receiver. It was confirmed that correlations between forest variables and horizontal position error regardless of the GNSS receiver employed were significant, yet trends were not consistent. The effect of the size of nearby trees on horizontal position error could not be generalized; however, the location of nearby trees on horizontal position error could.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference36 articles.

1. Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou.;X Li;Sci Rep.,2015

2. Recent advances and perspectives for positioning and applications with smartphone GNSS observations;J. Paziewski;Meas Sci Technol,2020

3. On the accuracy of low-cost dual-frequency GNSS network receivers and reference data.;ME Hodgson;GISci Remote Sens,2020

4. Positioning methods and the use of location and activity data in forests.;RF Keefe;Forests,2019

5. Study on the positioning accuracy of GNSS/INS systems supported by DGPS and RTK receivers for hydrographic surveys.;A Stateczny;Energies,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3