Volume of hyperintense inflammation (VHI): A quantitative imaging biomarker of inflammation load in spondyloarthritis, enabled by human-machine cooperation

Author:

Hepburn Carolyna,Jones Alexis,Bainbridge Alan,Ciurtin Coziana,Iglesias Juan Eugenio,Zhang Hui,Hall-Craggs Margaret A.ORCID,Bray Timothy J. P.ORCID

Abstract

Qualitative visual assessment of MRI scans is a key mechanism by which inflammation is assessed in clinical practice. For example, in axial spondyloarthritis (axSpA), visual assessment focuses on the identification of regions with increased signal in the bone marrow, known as bone marrow oedema (BMO), on water-sensitive images. The identification of BMO has an important role in the diagnosis, quantification and monitoring of disease in axSpA. However, BMO evaluation depends heavily on the experience and expertise of the image reader, creating substantial imprecision. Deep learning-based segmentation is a natural approach to addressing this imprecision, but purely automated solutions require large training sets that are not currently available, and deep learning solutions with limited data may not be sufficiently trustworthy for use in clinical practice. To address this, we propose a workflow for inflammation segmentation incorporating both deep learning and human input. With this ‘human-machine cooperation’ workflow, a preliminary segmentation is generated automatically by deep learning; a human reader then ‘cleans’ the segmentation by removing extraneous segmented voxels. The final cleaned segmentation defines the volume of hyperintense inflammation (VHI), which is proposed as a quantitative imaging biomarker (QIB) of inflammation load in axSpA. We implemented and evaluated the proposed human-machine workflow in a cohort of 29 patients with axSpA who had undergone prospective MRI scans before and after starting biologic therapy. The performance of the workflow was compared against purely visual assessment in terms of inter-observer/inter-method segmentation overlap, inter-observer agreement and assessment of response to biologic therapy. The human-machine workflow showed superior inter-observer segmentation overlap than purely manual segmentation (Dice score 0.84 versus 0.56). VHImeasurements produced by the workflow showed similar or better inter-observer agreement than visual scoring, with similar response assessments. We conclude that the proposed human-machine workflow offers a mechanism to improve the consistency of inflammation assessment, and that VHIcould be a valuable QIB of inflammation load in axSpA, as well as offering an exemplar of human-machine cooperation more broadly.

Funder

University College London Hospitals Biomedical Research Centre

Research Trainees Coordinating Centre

Action Medical Research

Humanimal Trust

Albert Gubay foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3