Abstract
Pollinator health risks from long-lasting neonicotinoid insecticides like imidacloprid has primarily focused on commercially managed, cavity-nesting bees in the genera Apis, Bombus, and Osmia. We expand these assessments to include 12 species of native and non-native crop pollinators of differing levels of body size, sociality, and floral specialization. Bees were collected throughout 2016 and 2017 from flowering blueberry, squash, pumpkin, sunflower and okra in south Mississippi, USA. Within 30–60 minutes of capture, bees were installed in bioassay cages made from transparent plastic cups and dark amber jars. Bees were fed via dental wicks saturated with 27% (1.25 M) sugar syrup containing a realistic range of sublethal concentrations of imidacloprid (0, 5, 20, or 100 ppb) that are often found in nectar. Bees displayed no visible tremors or convulsions except for a small sweat bee, Halictus ligatus, and only at 100ppb syrup. Imidacloprid shortened the captive longevities of the solitary bees. Tolerant bee species lived ~10 to 12 days in the bioassays and included two social and one solitary species: Halictus ligatus, Apis mellifera and Ptilothrix bombiformis (rose mallow bees), respectively. No other bee species tolerated imidacloprid as well as honey bees did, which exhibited no appreciable mortality and only modest paralysis across concentration. In contrast, native bees either lived shorter lives, experienced longer paralysis, or endured both. Overall, longevity decreased with concentration linearly for social bees and non-linearly for solitary species. The percentage of a bee’s captive lifespan spent paralyzed increased logarithmically with concentration for all species, although bumble bees suffered longest. Of greatest concern was comparable debilitation of agriculturally valuable solitary bees at both low and high sublethal rates of imidacloprid.
Funder
Agricultural Research Service
Publisher
Public Library of Science (PLoS)