Screening of adolescent idiopathic scoliosis using generative adversarial network (GAN) inversion method in chest radiographs

Author:

Lee Jun SooORCID,Shin KeewonORCID,Ryu Seung MinORCID,Jegal Seong GyuORCID,Lee WoojinORCID,Yoon Min A.,Hong Gil-Sun,Paik Sanghyun,Kim NamkugORCID

Abstract

Objective Conventional computer-aided diagnosis using convolutional neural networks (CNN) has limitations in detecting sensitive changes and determining accurate decision boundaries in spectral and structural diseases such as scoliosis. We devised a new method to detect and diagnose adolescent idiopathic scoliosis in chest X-rays (CXRs) employing the latent space’s discriminative ability in the generative adversarial network (GAN) and a simple multi-layer perceptron (MLP) to screen adolescent idiopathic scoliosis CXRs. Materials and methods Our model was trained and validated in a two-step manner. First, we trained a GAN using CXRs with various scoliosis severities and utilized the trained network as a feature extractor using the GAN inversion method. Second, we classified each vector from the latent space using a simple MLP. Results The 2-layer MLP exhibited the best classification in the ablation study. With this model, the area under the receiver operating characteristic (AUROC) curves were 0.850 in the internal and 0.847 in the external datasets. Furthermore, when the sensitivity was fixed at 0.9, the model’s specificity was 0.697 in the internal and 0.646 in the external datasets. Conclusion We developed a classifier for Adolescent idiopathic scoliosis (AIS) through generative representation learning. Our model shows good AUROC under screening chest radiographs in both the internal and external datasets. Our model has learned the spectral severity of AIS, enabling it to generate normal images even when trained solely on scoliosis radiographs.

Funder

Ministry of Education

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3