Abstract
Because pigs are intermediate or amplifying hosts for several zoonotic viruses, the pig-derived PK-15 cell line is an indispensable tool for studying viral pathogenicity and developing treatments, vaccines, and preventive measures to mitigate the risk of disease outbreaks. However, we must consider the possibility of contamination by type I interferons (IFNs), such as IFNα and IFNβ, or IFN-inducing substances, such as virus-derived double-stranded RNA or bacterial lipopolysaccharides, in clinical samples, leading to lower rates of viral isolation. In this study, we aimed to generate a PK-15 cell line that can be used to isolate viruses from clinical samples carrying a risk of contamination by IFN-inducing substances. To this end, we depleted the IFN alpha and beta receptor subunit 1 (Ifnar1) gene or signal transducer and activator of transcription 2 (Stat2) gene in PK-15 cells using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 method. Treatment of PK-15 cells lacking Ifnar1 or Stat2 with IFNβ or poly (I:C) resulted in no inhibitory effects on viral infection by a lentiviral vector, influenza virus, and Akabane virus. These results demonstrate that PK-15 cells lacking Ifnar1 or Stat2 could represent a valuable and promising tool for viral isolation, vaccine production, and virological investigations.
Funder
Japan Agency for Medical Research and Development
Japan Society for the Promotion of Science
The Ito Foundation
Publisher
Public Library of Science (PLoS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献