Using a novel fuzzy 3-inputs algorithms to control the active hydraulic stabilizer bar with the complex model of the vehicle nonlinear dynamics

Author:

Nguyen Tuan AnhORCID

Abstract

Under the influence of centrifugal force, the rollover phenomenon may occur. The vehicle rolls over when the wheel is completely separated from the road surface, i.e., the vertical force of the wheel is reduced to zero. To overcome this problem, the active stabilizer bar is used at the front and rear axles of the vehicle. The active stabilizer bar works on the difference in fluid pressure inside the hydraulic motor. This article is aimed at studying the vehicle rollover dynamics when the hydraulic stabilizer bar is used. In this article, the model of a complex dynamic is established. This is a combination of the model of spatial dynamics, the model of nonlinear double-track dynamics, and the nonlinear tire model. The operation of the hydraulic actuator is controlled by a fuzzy algorithm with 3-inputs. The defuzzification rule is determined based on the combination of 27 cases. The process of calculation and simulation is done with four specific cases corresponding to steering angles. In each case, three situations were investigated. Besides, the speed of the vehicle is also gradually increased from v1 to v4. As a result of the simulation, which was performed in the MATLAB-Simulink environment, the output values such as roll angle, change of the vertical force, and roll index were significantly reduced when the active stabilizer bar was used. If the vehicle does not use the stabilizer bar, the vehicle may roll over in both the second, third, and fourth cases. If the vehicle uses a mechanical stabilizer bar, this also occurs in the third and fourth cases (only at a very high velocity, v4). However, the rollover phenomenon did not occur if the vehicle used a hydraulic stabilizer bar controlled by the fuzzy 3-inputs algorithm. In all investigated cases, the stability and safety of the vehicle are always guaranteed. Besides, the responsiveness of the controller is also very good. An experimental process needs to be conducted to verify the correctness of this research.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference43 articles.

1. Overview of Car Rollover System Development;S. Zhang;Advances in Engineering Research,2018

2. Research Method of Vehicle Rollover Mechanism under Critical Instability Condition;B. Li;Advances in Mechanical Engineering,2019

3. Research on the Speed Thresholds of Trucks in a Sharp Turn Based on Dynamic Rollover Risk Levels;T. Xin;Plos One,2021

4. Research on Dynamic Vehicle Model Equipped Active Stabilizer Bar;A. N. Tuan;Advances in Science, Technology and Engineering Systems Journal,2019

5. Integrated Chassis Control for Vehicle Rollover Prevention with Neural Network Time-to-Rollover Warning Metrics;B. Zhu;Advances in Mechanical Engineering,2016

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3