Abstract
Regeneration of mammalian cochlear hair cells (HCs) by modulating molecular pathways or transcription factors is a promising approach to hearing restoration; however, immaturity of the regenerated HCs in vivo remains a major challenge. Here, we analyzed a single cell RNA sequencing (scRNA-seq) dataset during Atoh1-induced supporting cell (SC) to hair cell (HC) conversion in adult mouse cochleae (Yamashita et al. (2018)) using multiple high-throughput sequencing analytical tools (WGCNA, SCENIC, ARACNE, and VIPER). Instead of focusing on differentially expressed genes, we established independent expression modules and confirmed the existence of multiple conversion stages. Gene regulatory network (GRN) analysis uncovered previously unidentified key regulators, including Nhlh1, Lhx3, Barhl1 and Nfia, that guide converted HC differentiation. Comparison of the late-stage converted HCs with the scRNA-seq data from neonatal mouse cochleae (Kolla et al. (2020)) revealed that they closely resemble postnatal day 1 wild-type OHCs, in contrast to other developmental stages. Using ARACNE and VIPER, we discovered multiple key regulators likely to promote conversion to a more mature OHC-like state, including Zbtb20, Nfia, Zmiz1, Gm14418, Bhlhe40, Six2, Fosb and Klf9. Our findings provide insights into the regulation of HC regeneration in adult mammalian cochleae in vivo and demonstrate an approach for analyzing GRNs in large scRNA-seq datasets.
Funder
NIH
Office of Naval Research
Medical Research and Materiel Command
Creighton University
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献