Detecting hypoglycemia-induced electrocardiogram changes in a rodent model of type 1 diabetes using shape-based clustering

Author:

Mistry SejalORCID,Gouripeddi RamkiranORCID,Reno Candace M.,Abdelrahman Samir,Fisher Simon J.,Facelli Julio C.ORCID

Abstract

Sudden death related to hypoglycemia is thought to be due to cardiac arrhythmias. A clearer understanding of the cardiac changes associated with hypoglycemia is needed to reduce mortality. The objective of this work was to identify distinct patterns of electrocardiogram heartbeat changes that correlated with glycemic level, diabetes status, and mortality using a rodent model. Electrocardiogram and glucose measurements were collected from 54 diabetic and 37 non-diabetic rats undergoing insulin-induced hypoglycemic clamps. Shape-based unsupervised clustering was performed to identify distinct clusters of electrocardiogram heartbeats, and clustering performance was assessed using internal evaluation metrics. Clusters were evaluated by experimental conditions of diabetes status, glycemic level, and death status. Overall, shape-based unsupervised clustering identified 10 clusters of ECG heartbeats across multiple internal evaluation metrics. Several clusters demonstrating normal ECG morphology were specific to hypoglycemia conditions (Clusters 3, 5, and 8), non-diabetic rats (Cluster 4), or were generalized among all experimental conditions (Cluster 1). In contrast, clusters demonstrating QT prolongation alone or a combination of QT, PR, and QRS prolongation were specific to severe hypoglycemia experimental conditions and were stratified heartbeats by non-diabetic (Clusters 2 and 6) or diabetic status (Clusters 9 and 10). One cluster demonstrated an arrthymogenic waveform with premature ventricular contractions and was specific to heartbeats from severe hypoglycemia conditions (Cluster 7). Overall, this study provides the first data-driven characterization of ECG heartbeats in a rodent model of diabetes during hypoglycemia.

Funder

U.S. National Library of Medicine

NIDDK

National Center for Advancing Translational Sciences

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3