Predicting microbe organisms using data of living micro forms of life and hybrid microbes classifier

Author:

Raza Ali,Rustam Furqan,Siddiqui Hafeez Ur Rehman,Diez Isabel de la Torre,Ashraf ImranORCID

Abstract

Microbe organisms make up approximately 60% of the earth’s living matter and the human body is home to millions of microbe organisms. Microbes are microbial threats to health and may lead to several diseases in humans like toxoplasmosis and malaria. The microbiological toxoplasmosis disease in humans is widespread, with a seroprevalence of 3.6-84% in sub-Saharan Africa. This necessitates an automated approach for microbe organisms detection. The primary objective of this study is to predict microbe organisms in the human body. A novel hybrid microbes classifier (HMC) is proposed in this study which is based on a decision tree classifier and extra tree classifier using voting criteria. Experiments involve different machine learning and deep learning models for detecting ten different living microforms of life. Results suggest that the proposed HMC approach achieves a 98% accuracy score, 98% geometric mean score, 97% precision score, and 97% Cohen Kappa score. The proposed model outperforms employed models, as well as, existing state-of-the-art models. Moreover, the k-fold cross-validation corroborates the results as well. The research helps microbiologists identify the type of microbe organisms with high accuracy and prevents many diseases through early detection.

Funder

European University of Atlantic

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3