Abstract
Engineered bacteria are promising candidates for in situ detection and treatment of diseases. The female uro-genital tract presents several pathologies, such as sexually transmitted diseases or genital cancer, that could benefit from such technology. While bacteria from the gut microbiome are increasingly engineered, the use of chassis isolated from the female uro-genital resident flora has been limited. A major hurdle to implement the experimental throughput required for efficient engineering in these non-model bacteria is their low transformability. Here we report an optimized electrotransformation protocol for Lactobacillus jensenii, one the most widespread species across vaginal microflora. Starting from classical conditions, we optimized buffers, electric field parameters, cuvette type and DNA quantity to achieve an 80-fold improvement in transformation efficiency, with up to 3.5·103 CFUs/μg of DNA in L. jensenii ATCC 25258. We also identify several plasmids that are maintained and support reporter gene expression in L. jensenii. Finally, we demonstrate that our protocol provides increased transformability in three independent clinical isolates of L. jensenii. This work will facilitate the genetic engineering of L. jensenii and enable its use for addressing challenges in gynecological healthcare.
Funder
ATIP-Avenir
Fondation Bettencourt Schueller
Ministère de l'Enseignement Supérieur et de la Recherche
Ligue Contre le Cancer
Publisher
Public Library of Science (PLoS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献