Multimodal brain tumor image segmentation based on DenseNet

Author:

Wu XiaoqinORCID,Yang XiaoliORCID,Li Zhenwei,Liu Lipei,Xia Yuxin

Abstract

A brain tumor magnetic resonance image processing algorithm can help doctors to diagnose and treat the patient’s condition, which has important application significance in clinical medicine. This paper proposes a network model based on the combination of U-net and DenseNet to solve the problems of class imbalance in multi-modal brain tumor image segmentation and the loss of effective information features caused by the integration of features in the traditional U-net network. The standard convolution blocks of the coding path and decoding path on the original network are improved to dense blocks, which enhances the transmission of features. The mixed loss function composed of the Binary Cross Entropy Loss function and the Tversky coefficient is used to replace the original single cross-entropy loss, which restrains the influence of irrelevant features on segmentation accuracy. Compared with U-Net, U-Net++, and PA-Net the algorithm in this paper has significantly improved the segmentation accuracy, reaching 0.846, 0.861, and 0.782 respectively in the Dice coefficient index of WT, TC, and ET. The PPV coefficient index has reached 0.849, 0.883, and 0.786 respectively. Compared with the traditional U-net network, the Dice coefficient index of the proposed algorithm exceeds 0.8%, 4.0%, and 1.4%, respectively, and the PPV coefficient index in the tumor core area and tumor enhancement area increases by 3% and 1.2% respectively. The proposed algorithm has the best performance in tumor core area segmentation, and its Sensitivity index has reached 0.924, which has good research significance and application value.

Funder

the Key Research and Development and Promotion Project of Henan Province

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3