Rattractor—Instant guidance of a rat into a virtual cage using the deep brain stimulation

Author:

Sudo Naoki,Fujiwara Sei-etsu,Isoyama Takashi,Fukayama OsamuORCID

Abstract

We developed “Rattractor” (rat attractor), a system to apply electrical stimuli to the deep brain of a rat as it stays in a specified region or a virtual cage to demonstrate an instant electrophysiological feedback guidance for animals. Two wire electrodes were implanted in the brains of nine rats. The electrodes targeted the medial forebrain bundle (MFB), which is a part of the reward system in the deep brain. Following the recovery period, the rats were placed in a plain field where they could move freely, but wired to a stimulation circuit. An image sensor installed over the field detected the subject’s position, which triggered the stimulator such that the rat remained within the virtual cage. We conducted a behavioral experiment to evaluate the sojourn ratio of rats residing in the region. Thereafter, a histological analysis of the rat brain was performed to confirm the position of the stimulation sites in the brain. Seven rats survived the surgery and the recovery period without technical failures such as connector breaks. We observed that three of them tended to stay in the virtual cage during stimulation, and this effect was maintained for two weeks. Histological analysis revealed that the electrode tips were correctly placed in the MFB region of the rats. The other four subjects showed no apparent preference for the virtual cage. In these rats, we did not find electrode tips in the MFB, or could not determine their positions. Almost half of the rats tended to remain inside the virtual cage when position-related reward stimuli were triggered in the MFB region. Notably, our system did not require previous training or sequential interventions to affect the behavioral preferences of subjects. This process is similar to the situation in which sheep are chased by a shepherd dog in the desired direction.

Funder

Japan Society of the Promotion of the Science

Precise Measurement Technology Foundation

St. Marianna University School of Medicine Grant to Promote Diversity in Research

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3