Speech extraction from vibration signals based on deep learning

Author:

Wang Li,Zheng WeiguangORCID,Li Shande,Huang Qibai

Abstract

Extracting speech information from vibration response signals is a typical system identification problem, and the traditional method is too sensitive to deviations such as model parameters, noise, boundary conditions, and position. A method was proposed to obtain speech signals by collecting vibration signals of vibroacoustic systems for deep learning training in the work. The vibroacoustic coupling finite element model was first established with the voice signal as the excitation source. The vibration acceleration signals of the vibration response point were used as the training set to extract its spectral characteristics. Training was performed by two types of networks: fully connected, and convolutional. And it is found that the Fully Connected network prediction model has faster Rate of convergence and better quality of extracted speech. The amplitude spectra of the output speech signals (network output) and the phase of the vibration signals were used to convert extracted speech signals back to the time domain during the test set. The simulation results showed that the positions of the vibration response points had little effect on the quality of speech recognition, and good speech extraction quality can be obtained. The noises of the speech signals posed a greater influence on the speech extraction quality than the noises of the vibration signals. Extracted speech quality was poor when both had large noises. This method was robust to the position deviation of vibration responses during training and testing. The smaller the structural flexibility, the better the speech extraction quality. The quality of speech extraction was reduced in a trained system as the mass of node increased in the test set, but with negligible differences. Changes in boundary conditions did not significantly affect extracted speech quality. The speech extraction model proposed in the work has good robustness to position deviations, quality deviations, and boundary conditions.

Funder

Guangxi Innovation-Driven Development Project

Liudong Science and Technology Project

Science and Technology Planning Project of Liuzhou

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference27 articles.

1. Analysis of feature extraction techniques for speech recognition system[J];R Ranjan;International Journal of Innovative Technology and Exploring Engineering,2019

2. Feature extraction algorithms to improve the speech emotion recognition rate[J];A Koduru;International Journal of Speech Technology,2020

3. Reconstruction of turbine blade forces from response data[J];S Vyas N;Mechanism and Machine Theory,2001

4. Inverse combustion force estimation based on response measurements outside the combustion chamber and signal processing[J];H Fouladi M;Mechanical Systems and Signal Processing,2009

5. Stable force identification in structural dynamics using Kalman filtering and dummy-measurements[J];F Naets;Mechanical Systems and Signal Processing,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3