Oxidative stress, dysfunctional energy metabolism, and destabilizing neurotransmitters altered the cerebral metabolic profile in a rat model of simulated heliox saturation diving to 4.0 MPa

Author:

Liu Xia,Fang Yiqun,Xu Jiajun,Yang Tao,Xu Ji,He Jia,Liu Wenwu,Yu Xuhua,Wen Yukun,Zhang Naixia,Li CiORCID

Abstract

The main objective of the present study was to determine metabolic profile changes in the brains of rats after simulated heliox saturated diving (HSD) to 400 meters of sea water compared to the blank controls. Alterations in the polar metabolome in the rat brain due to HSD were investigated in cortex, hippocampus, and striatum tissue samples by applying an NMR-based metabolomic approach coupled with biochemical detection in the cortex. The reduction in glutathione and taurine levels may hypothetically boost antioxidant defenses during saturation diving, which was also proven by the increased malondialdehyde level, the decreased superoxide dismutase, and the decreased glutathione peroxidase in the cortex. The concomitant decrease in aerobic metabolic pathways and anaerobic metabolic pathways comprised downregulated energy metabolism, which was also proven by the biochemical quantification of the metabolic enzymes Na-K ATPase and LDH in cerebral cortex tissue. The significant metabolic abnormalities of amino acid neurotransmitters, such as GABA, glycine, and aspartate, decreased aromatic amino acids, including tyrosine and phenylalanine, both of which are involved in the metabolism of dopamine and noradrenaline, which are downregulated in the cortex. Particularly, a decline in the level of N-acetyl aspartate is associated with neuronal damage. In summary, hyperbaric decompression of a 400 msw HSD affected the brain metabolome in a rat model, potentially including a broad range of disturbing amino acid homeostasis, metabolites related to oxidative stress and energy metabolism, and destabilizing neurotransmitter components. These disturbances may contribute to the neurochemical and neurological phenotypes of HSD.

Funder

the military medical innovation special project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3