Adenosine triphosphate (ATP) sampling algorithm for monitoring the cleanliness of surgical instruments

Author:

Pontes Daniela OliveiraORCID,Costa Dayane de Melo,da Silva Pereira Priscilla PerezORCID,Whiteley Greg S.,Glasbey Trevor,Tipple Anaclara Ferreira VeigaORCID

Abstract

Background Timely detection of cleaning failure is critical for quality assurance within Sterilising Service Units (SSUs). Rapid Adenosine Triphosphate (ATP) testing provides a real time and quantitative indication of cellular contaminants, when used to measure surface or device cleanliness. The aim of this study was to investigate the use of an ATP algorithm and to whether it could be used as a routine quality assurance step, to monitor surgical instruments cleanliness in SSUs prior to sterilisation. Methods Cleanliness monitoring using rapid ATP testing was undertaken in the SSUs of four hospitals located in the western (Amazonia) region of Brazil. ATP testing was conducted (Clean Trace, 3M) on 163 surgical instruments, following manual cleaning. A sampling algorithm using a duplicate swab approach was applied to indicate surgical instruments as (i) very clean, (ii) clean, (iii) equivocal or (iv) fail, based around a ‘clean’ cut-off of 250 Relative Light Units (RLU) and a ‘very clean’ <100 RLU. Results The four cleanliness categories were significantly differentiated (P≤0.001). The worst performing locations (hospitals A & C) had failure rates of 39.2% and 32.4%, respectively, and were distinctly different from hospitals B & D (P≤0.001). The best performing hospitals (B & D) had failure rates of 7.7% and 2.8%, respectively. Conclusion The ATP testing algorithm provides a simple to use method within SSUs. The measurements are in real time, quantitative and useful for risk-based quality assurance monitoring, and the tool can be used for staff training. The four-tiered approach to the grading of surgical instrument cleanliness provides a nuanced approach for continuous quality improvement within SSU than does a simple pass/fail methodology.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3