Domain-Driven Binding of Fibrin(Ogen) onto Silk Fibroin Biomaterials

Author:

Santin Matteo,Denyer Stephen P.,Lloyd Andrew W.1,Motta Antonella2

Affiliation:

1. School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK

2. Department of Materials Engineering, University of Trento, Via Mesiano 77, 38050 Trento, Italy

Abstract

Studies have demonstrated that serum protein adsorption onto silk fibroin-based biomaterials dramatically changes when the conformation of this natural polymer is rearranged by engineering procedures. In the present study, attention was paid to the binding of fibrin(ogen) to fibroin fibers and regenerated films. The fibroin specimens were incubated either in human plasma or in a fibrinogen solution to which thrombinwas added to activate the polymerization of the precursor into the final product, fibrin. The experiments were carried out in the presence and absence of calcium to investigate the role of calcium-dependent enzymes in the binding process. The two types of samples were analyzed by SEM, the micrographs showed completely different interactions with fibrinogen. Films did not show any visible fibrin polymerization, whereas the fibers were bound to the fibrin bundles by calcium-independent mechanisms.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3