Analysis of risk factors of suicidal ideation in adolescent patients with depression and construction of prediction model

Author:

Zhou Jun-Chao,Cao Yan,Xu Xu-Yuan,Xian Zhen-Ping

Abstract

BACKGROUND Major depressive disorder is a common mental illness among adolescents and is the largest disease burden in this age group. Most adolescent patients with depression have suicidal ideation (SI); however, few studies have focused on the factors related to SI, and effective predictive models are lacking. AIM To construct a risk prediction model for SI in adolescent depression and provide a reference assessment tool for prevention. METHODS The data of 150 adolescent patients with depression at the First People's Hospital of Lianyungang from June 2020 to December 2022 were retrospectively analyzed. Based on whether or not they had SI, they were divided into a SI group (n = 91) and a non-SI group (n = 59). The general data and laboratory indices of the two groups were compared. Logistic regression was used to analyze the factors influencing SI in adolescent patients with depression, a nomogram prediction model was constructed based on the analysis results, and internal evaluation was performed. Receiver operating characteristic and calibration curves were used to evaluate the model’s efficacy, and the clinical application value was evaluated using decision curve analysis (DCA). RESULTS There were differences in trauma history, triggers, serum ferritin levels (SF), high-sensitivity C-reactive protein levels (hs-CRP), and high-density lipoprotein (HDL-C) levels between the two groups (P < 0.05). Logistic regression analysis showed that trauma history, predisposing factors, SF, hs-CRP, and HDL-C were factors influencing SI in adolescent patients with depression. The area under the curve of the nomogram prediction model was 0.831 (95%CI: 0.763–0.899), sensitivity was 0.912, and specificity was 0.678. The higher net benefit of the DCA and the average absolute error of the calibration curve were 0.043, indicating that the model had a good fit. CONCLUSION The nomogram prediction model based on trauma history, triggers, ferritin, serum hs-CRP, and HDL-C levels can effectively predict the risk of SI in adolescent patients with depression.

Publisher

Baishideng Publishing Group Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3