A Review on Molecular Dynamics Simulation of Joining Carbon-Nanotubes and Nanowires: Joining and Properties

Author:

Zaenudin M, ,Mohammed M N,Gamayel Adhes, ,

Abstract

Carbon-nanotubes (CNTs) and Nanowires (NWs), the two nanomaterials with outstanding properties, are the materials with which their behaviour and properties have long been drawing attention to researchers. However, the tiny nature of these two materials causes difficulties in describing and estimating their behaviour and properties, thus a numerical technique that considers the tiny nature of the materials like Molecular Dynamics (MD) simulation is a promising solution to this problem. Since the early utilization of MD simulation in the investigation of the behaviour of carbon-nanotubes and nanowires, it provides the researcher with an excellent description of how the two materials behave at atomic-scale and then estimate their properties. Recently, MD simulation of CNTs and NWs exhibit growth in the simulation size as with the growth of the computing capabilities. The size of the materials being simulated by MD simulation increased significantly in the recent year, thus giving possibility to achieve a better description of the behaviour and a more precise estimation of the properties. In this review, we provide an overview of the recent advances in the investigation of the joining processes and properties of carbon-nanotubes and nanowires at atomic-scale utilizing molecular dynamics simulation.

Publisher

Penerbit UTHM

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3