Numerical Modelling of Bird Strike on Aerospace Structures by means of Coupling FE-SPH

Author:

Abdullah Nur Azam, ,Yusoff Mohammad Daniel,Shahimi Sharis - Shazzali,Meor Ahmad Meor Iqram, , ,

Abstract

This article offers a parametric mechanics investigation in defining the correlation between the parameters of a wing-body during a bird strike collision. A commercial software of LS-Dyna is used to compute the numerical modelling manifested in this research. In this study, it is an attempt to form a definitive work based on the Smoothed Particle Hydrodynamics (SPH)formulation by recognising the most critical influencing parameters in the bird-strike computation and verify the simulation with the experiment data. For instance, an idealised bird is modelled as a cylindrical shape with hemispherical ends to maintain the homogeneity and symmetryusing SPH approach. Moreover, an aluminium alloyrigid flatplate is modelled as a shell element plate in the finite element model (FEM). Here, internal energy vs time for different plate thickness graph are plotted to observe the difference of absorbed energy during the impact. Such conditions are considered in this research from the sight of bird strike impact under multiple states (structural thickness) and constraints (bird size). The obtained computational results are in adjacent agreement with the experimental results published in another literature.

Publisher

Penerbit UTHM

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3