Control Chart Pattern Recognition Using Small Window Size for Identifying Bivariate Process Mean Shifts

Author:

Kasmin A., ,Masood I.,Abdul Rahman N.,Abdul Kadir A.H.,Abdol Rahman M.N., , , ,

Abstract

There are many traits in the manufacturing technology to assure the quality of products. One of the current practices aims for monitoring the in-process quality of small-lot production using Statistical Process Control (SPC), which requires small samples or small window sizes. In this study, the recognition performance of bivariate SPC pattern recognition scheme was investigated when dealing with small window sizes (less than 24). The framework of the scheme was constructed using an artificial neural network recognizer. The simulated SPC samples in different window sizes (8 ~ 24) and different change points (fixed and varies) were generated to study the recognition performance of the scheme based on mean square error (MSE) and classification accuracy (CA) measures. Two main findings have been suggested: (i) the scheme was superior when recognizing shift patterns with various change points compared to the shift patterns with fixed change point, with lower MSE and higher CA results, (ii) the scheme was more difficult to recognize smaller window size patterns with increasing MSE and decreasing CA trends, since these patterns provided insufficient information of unnatural variation. The outcome of this study would be helpful for industrial practitioners towards applying SPC for small-lot-production.

Publisher

Penerbit UTHM

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3