Short-term wind speed forecasting using ARIMA model

Author:

Grigonytė Ernesta,Butkevičiūtė Eglė

Abstract

The massive integration of wind power into the power system increasingly calls for better short-term wind speed forecasting which helps transmission system operators to balance the power systems with less reserve capacities. The  time series analysis methods are often used to analyze the  wind speed variability. The  time series are defined as a sequence of observations ordered in time. Statistical methods described in this paper are based on the prediction of future wind speed data depending on the historical observations. This allows us to find a sufficiently good model for the wind speed prediction. The paper addresses a short-term wind speed forecasting ARIMA (Autoregressive Integrated Moving Average) model. This method was applied for a number of different prediction problems, including the short term wind speed forecasts. It is seen as an early time series methodology with well-known limitations in wind speed forecasting, mainly because of insufficient accuracies of the hourly forecasts for the second half of the day-ahead forecasting period. The authors attempt to find the maximum effectiveness of the model aiming to find: (1) how the identification of the optimal model structure improves the forecasting results and (2) what accuracy increase can be gained by reidentification of the structure for a new wind weather season. Both historical and synthetic wind speed data representing the sample locality in the Baltic region were used to run the model. The model structure is defined by rows p, d, q and length of retrospective data period. The structure parameters p (Autoregressive component, AR) and q (Moving Average component, MA) were determined by the Partial Auto-Correlation Function (PACF) and Auto-Correlation Function (ACF), respectively. The model’s forecasting accuracy is based on the root mean square error (RMSE), mean absolute percentage error (MAPE) and mean absolute error (MAE). The results allowed to establish the optimal model structure and the length of the input/retrospective period. The  quantitative study revealed that identification of the  optimal model structure gives significant accuracy improvement against casual structures for 6–8 h forecast lead time, but a season-specific structure is not appropriate for the entire year period. Based on the conducted calculations, we propose to couple the ARIMA model with any more effective method into a hybrid model.

Publisher

Lithuanian Academy of Sciences

Subject

Energy (miscellaneous),Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3