Prediksi Perubahan Hemodinamik Pasien setelah Pemberian Premedikasi menggunakan Machine Learning Neural Network Guna Meningkatkan Kinerja Penanganan Medis

Author:

Aryasa Jiyestha Aji Dharma1,Widodo Aris Puji1,Widodo Catur Edi1

Affiliation:

1. Master of Information System, Postgraduate Program, Universitas Diponegoro, Jl. Imam Bardjo SH No.5, Pleburan, Semarang, Indonesia 50241, Indonesia

Abstract

This research presents the development process of a machine learning neural network model for predicting hemodynamic changes in patients after premedication, aiming to enhance the performance of medical interventions. The model was constructed using 3055 patients’ data who underwent premedication processes. The developed neural network model has an architecture consisting of 10 nodes in the input layer, 10 nodes in the hidden layer, and 3 nodes in the output layer. The evaluation results of the model indicate an overall accuracy of 85%. The precision values are high for normal class predictions at 0.85 and for hypertension class predictions at 0.81 with corresponding recalls of 1 (high) and 0.6 (moderate), respectively. However, predictions for the hypotension class still have a low precision of 0.6 and a recall of 0.04 (very low) due to the significantly lower number of samples in the hypotension class compared to the normal and hypertension classes. While testing with new data, the model has successfully predicted whether patients will experience hemodynamic pressure changes. It is expected that this model can contribute to improving the performance of medical interventions, thereby minimizing undesirable hemodynamic pressure changes.

Publisher

Diponegoro University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3