Qualitative Evaluation for Asphalt Binder Modified with SBS Polymer

Author:

Al-Nawasir Rania I.ORCID,Al-Humeidawi Basim H.ORCID

Abstract

Solutions for safer, more durable infrastructure are required in light of increasing traffic and severe weather in Iraq. The most significant road conservation and maintenance challenges are the pavement's low resistance to dynamic loads and short service life. As a result, vast sums of money are spent annually to enhance the road service capacities in Iraq. Thermoplastic electrometric polymers for bitumen modification create long-lasting, cost-effective roadways. This study aims to determine how the mechanical properties of neat asphalt binder change when styrene butadiene styrene (SBS) is added as a modifier. The current research investigates adding three percentages of SBS (3, 5, and 7% of the weight of bitumen). Both neat and polymer-modified bitumen (PMB) were subjected to a series of physical laboratory and Superpave tests, including a dynamic shear rheometer tester (DSR) and a storage stability test. In addition, a chemical analysis test was conducted to identify any change in the neat binder chemical composition due to the addition of SBS polymer. The results indicated that 5% of SBS polymer was the optimum addition percentage to the local asphalt in Iraq. Additionally, it reduced the susceptibility of bitumen to temperature changes and enhanced its characteristics in all laboratory tests. The obtained PMB significantly improved rutting and fatigue factors compared to the neat asphalt binder. Based on the DSR tester and the storage stability test, the ratio of 5% SBS met the requirements of class PG76-10, used in the central and southern governorates of Iraq. Using SBS polymer on the surface course in Iraq reduces road damage due to the scorching summer sun, reduces the likelihood of rutting and fatigue cracking, and works well in hot regions, resulting in roads that last longer, provide comfortable riding, and require less maintenance.

Publisher

Tikrit University

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Environmental Science (miscellaneous),Chemical Engineering (miscellaneous),Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3