Abstract
Objectives: The overall goal was to analyze genetic diversity in cultivars of Musa acuminata (Colla) and M. balbisiana (Colla), commonly grown in farms from Caldas department. Scope: Characterization of the genetic variability, at the molecular and morphological level of cultivars of M. acuminata and M. balbisiana, found in farms from Caldas farmers using morphological descriptors and fluorescent microsatellites. Methodology: Phenotyping evaluations comprised 57 morphological characters following the descriptors proposed by IPGRI for the Musa genus, and for genotyping evaluations, nine fluorescent microsatellites (Simple Sequence Repeats-SSR) were used to allow the precise identification of alleles. Additionally, cluster analyses were carried out independently for both morphological and genotypic characterizations under Principal Component Analysis (PCA) and Bootstrapping methods respectively. Main results: Positive and negative highly significant correlations were found for the morphological descriptors, where traits such as presence/ absence of male bud was the rule, as well as the diameter and perimeter of this trait, plus the diameter and perimeter of the peduncle, number of fruits, pseudostem height and fruit length contributed considerably to the variability among the cultivars allowing the discrimination of three main groups in the cluster analyzes. From the molecular perspective a total of 72 polymorphic alleles were obtained, with an average genetic diversity of 0,79, polymorphic information content (PIC) of 0,77 and heterozygosity of 0,48, showed a moderate degree of genetic differentiation (FST = 0,061) among Musa cultivars, generating three main sub-clusters based on their genetic dissimilarity. Conclusions: The identification of certain morphological traits showed to be suitable for the discrimination of Musa cultivars evaluated here. On the other hand, molecular characterization allowed to establish the genetic relationships among groups, also fluorescent SSR were highly informative and accurate, in such a way that can be considered suitable for characterizations in Musa varieties.
Reference32 articles.
1. Addinsoft. (1993). Xlstat. Statistical Analysis in Excell. Addinsoft free trial version. All rights reserved. Berkley California.
2. Agronet. (2017). Evaluaciones Agropecuarias Municipales. Gobierno Nacional De Colombia, 4.
3. Ashikin, N., Abdullah, P., Saleh, G. Bin, Tarwaca, E., Putra, S., & Wahab, Z. Bin. (2012). Genetic relationship among Musa genotypes revealed by microsatellite markers. In African Journal of Biotechnology (Vol. 11). https://doi.org/10.5897/AJB10.1319
4. Batte, M., Mukiibi, A., Swennen, R., Uwimana, B., Pocasangre, L., Hovmalm, H. P., … & Ortiz, R. (2018). Suitability of existing Musa morphological descriptors to characterize East African highland ‘matooke’ bananas. Genetic Resources and Crop Evolution, 65(2), 645–657. https://doi.org/10.1007/s10722-017-0562-9
5. Blacket, M., Robin, C., Good, R., Lee, S., & Miller, A. (2012). Universal primers for fluorescent labelling of PCR fragments-an efficient and cost-effective approach to genotyping by fluorescence. Molecular Ecology Resources, 12(3), 456–463: https://doi.org/10.1111/j.1755-0998.2011.03104.x