Experimental and DFT study of Cu(II) removed by Na-montmorillonite

Author:

Wang Danqi1ORCID,Wang Ruicong1,Peng Wencai12,Zhang Jinli3,Wang Yi1,Huang Minghui1,Zhang Na1,Duan Yanan1,Fang Ying1

Affiliation:

1. a School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China

2. b Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi, Xinjiang, China

3. c School of Chemical Engineering, Tianjin University, Tianjin 300350, China

Abstract

Abstract The experimental and theoretical studies on the adsorption of Cu(II) on the surface of Na-montmorillonite (Na-Mt) were reported. Effects of batch adsorption experimental parameters were studied. Density functional theory and molecular dynamics simulations were used to study the adsorption of Cu(II) on montmorillonite (001) surface. The adsorption reached equilibrium within 80 min and the adsorption capacity was 35.23 mg·g−1 at 25 °C. The adsorption data of Cu(II) were consistent with pseudo-second-order kinetics and Langmuir isotherm models. The adsorption process was dominated by physical adsorption (Ea was 37.08 kJ·mol−1) with spontaneous endothermic behavior. The influence of coexisting cations on the adsorption capacity of Cu(II) was Mg(II) > Co(II) > Ca(II) > Na(I). The simulation results demonstrated that there were no significant differences in the adsorption energy of Cu(II) at the four adsorption sites on the montmorillonite (001) surface. Cu(II) had more electron transfer than Na(I). The diffusion coefficient of Cu(II) in the aqueous solution system containing montmorillonite was 0.85×10−10 m2·s−1. Considerable amounts of Cu(II) ions were adsorbed at a distance of 0.26 and 2.25 Å from the montmorillonite (001) surface. The simulation results provided strong supporting evidence for experimental conclusions.

Funder

the Major Science and Technology Project of Xinjiang Bingtuan

the Major Science and Technology Project of Bashi Shihezi City

the National Natural Science Foundation of China

National Defense Science and Technology Innovation Fund of the Chinese Academy of Sciences

Guangdong Provincial Applied Science and Technology Research and Development Program

Weihai Science and Technology Development Program

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3