Hybrid model for daily streamflow and phosphorus load prediction

Author:

Lee DoYeon1ORCID,Shin Jihoon1ORCID,Kim TaeHo2ORCID,Lee Sangchul1ORCID,Kim Dongho1ORCID,Park Yeonjeong3,Cha YoonKyung1ORCID

Affiliation:

1. a School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul 02504, Republic of Korea

2. b Civil and Environmental Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA

3. c Water Quality Assessment Research Division, National Institute of Environmental Research, Seo-gu, Incheon 22689, Republic of Korea

Abstract

Abstract Environmental factors, such as climate change and land use changes, affect water quality drastically. To consider these, various predictive models, both process-based and data-driven, have been used. However, each model has distinct limitations. In this study, a hybrid model combining the soil and water assessment tool and the reverse time attention mechanism (SWAT–RETAIN) was proposed for predicting daily streamflow and total phosphorus (TP) load of a watershed. SWAT–RETAIN was applied to Hwangryong River, South Korea. The hybrid model uses the SWAT output as input data for the RETAIN. Spatial, meteorological, and hydrological data were collected to develop the SWAT to generate high temporal resolution data. RETAIN facilitated effective simultaneous prediction. The SWAT–RETAIN exhibited high accuracy in predicting streamflow (Nash–Sutcliffe efficiency (NSE): 0.45, root mean square error (RMSE): 27.74, percent bias (PBIAS): 22.63 for test sets), and TP load (NSE: 0.50, RMSE: 423.93, PBIAS: 22.09 for test sets). This result was evident in the performance evaluation using flow duration and load duration curves. The SWAT–RETAIN provides enhanced temporal resolution and performance, enabling the simultaneous prediction of multiple variables. It can be applied to predict various water quality variables in larger watersheds.

Funder

Ministry of Science and ICT, South Korea

National Institute of Environmental Research

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3