Assessing water quality in the Dong Nai River (Vietnam): implications for sustainable management and pollution control

Author:

Thi Thu Huong Tran1,Quan Tran Anh1,Hanh Nguyen Thi Hong2,Tong Nguyen Xuan3

Affiliation:

1. a Faculty of Environment, Hanoi University of Mining and Geology (HUMG), No.18, Vien Street, Duc Thang Ward, Bac Tu Liem District, Hanoi, Vietnam

2. b Faculty of Environment, Hanoi University of Natural Resources and Environment, No. 41 A Phu Dien Road, North-Tu Liem District, Hanoi, Vietnam

3. c Institute of Environmental Science, Engineering, and Management; Industrial University of Ho Chi MInh, Vietnam

Abstract

Abstract Dong Nai River provides essential water resources for millions of people across 11 provinces and cities in Vietnam. However, the different pollution sources such as household, farming, and industrial operations have caused the river water quality to deteriorate over the past decade. To gain a comprehensive understanding of the river's surface water quality, this study employed the water quality index (WQI) across 12 different sampling sites. In total,144 water samples with 11 parameters were analyzed in accordance with the Vietnamese standard 08:2015/MONRE. Results revealed a range of surface water quality, from poor to good according to the VN-WQI (Vietnamese standard), and a medium even bad level in some months according to the NS-WQI (American standard). The study also identified temperature, coliform, and dissolved oxygen (DO) as strong contributors to WQI values (VN_WQI standard). Principal component analysis/factor analysis was used to determine pollution sources, with the results highlighting agricultural and domestic activities as the main contributors to river pollution. In conclusion, this study underscores the importance of effective planning and management of infrastructure zoning and local activities to improve the river's surface water quality and surrounding areas, as well as safeguard the well-being of the millions who depend on it.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3