Egeria densa organic extracts: an eco-friendly approach to suppress Microcystis aeruginosa growth through allelopathy

Author:

Wijesinghe Ashika1ORCID,Senavirathna Mudalige Don Hiranya Jayasanka1ORCID,Fujino Takeshi1ORCID

Affiliation:

1. 1 Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan

Abstract

Abstract Macrophytes play a significant role in shaping plankton communities by shading, controlling water turbulence, and nutrient availability, while also producing allelochemicals causing varying effects on different organisms. Many researchers have shown that when live macrophytes are present, they inhibit cyanobacteria. However, their widespread use is often limited due to numerous concerns, including invasive characteristics. This study focused on the applicability of Egeria densa extracts to suppress Microcystis aeruginosa. We employed pure water and dimethyl sulfoxide, to obtain compounds from E. densa. The results revealed that E. densa aqueous extracts stimulated M. aeruginosa growth, whereas organic extracts exhibited suppression. Specifically, at low concentrations of organics extracts (0.5 and 1 g/L), after day 4, the growth inhibition was confirmed by significantly higher (p < 0.05) stress levels shown in cells treated with low concentrations. The highest inhibition rate of 32% was observed at 0.5 g/L. However, high concentrations of organic extracts (3 and 6 g/L), showed increased growth compared with control. These results suggest that high concentrations of organic extracts from E. densa potentially suppress allelochemical-induced M. aeruginosa inhibition due to high nutrient availability. In comparison with an aqueous solvent, the use of organic solvent seems to be more effective in efficiently extracting allelochemicals from E. densa.

Funder

This research was supported by the annual budget allocation of Saitama University

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3