Application of recyclable nano zero-valent iron encapsulated L-cysteine catalytic cylinder product for degradation of BTEX in groundwater by persulfate oxidation

Author:

Sun Xuecheng1,Cui Changzheng1,Yang Chaoxiang2ORCID,Lyu Shuguang1

Affiliation:

1. State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China

2. Department of Industrial Design, East China University of Science and Technology, Shanghai 200237, China

Abstract

Abstract Benzene, toluene, ethylbenzene and xylene (BTEX) possess a negative impact on the environment and human beings due to their highly toxic and carcinogenic properties. In this study, persulfate (PS) activated by nano zero-valent iron (nZVI) coupled with chelated L-cysteine (L-cys) process was investigated for BTEX degradation in contaminated groundwater. BTEX degradation had a significant acceleration and improvement with the removal from 62.7 to 100% along with the increasing dosage of L-cys from 0.12 to 0.27 M in 24 h. Further, the compact nZVI catalytic cylinder and nZVI encapsulated L-cys catalytic cylinder were successfully manufactured by encapsulating nZVI, and nZVI and L-cys together with additives of cement, river sand, stearic acid (SA) and zeolite. The SEM image, XRD patterns and FTIR spectra showed that the manufactured catalytic cylinder had a porous structure and encapsulated nZVI and L-cys successfully. Six successive cycles of BTEX degradation were completed and the degradation rate decreased gradually in each cycle. The catalytic activity of nZVI encapsulated L-cys catalytic cylinder was superior to nZVI catalytic cylinder in each cycle. The electron paramagnetic resonance (EPR) results indicated that HO• was the dominant active species in the BTEX degradation process. Benzoic acid (BA) scavenge experiments showed that L-cys could increase the yield of HO• in the PS/nZVI system. The HO• yields of PS/nZVI encapsulated L-cys catalytic cylinder system were 3.2 to 4.8 fold higher than those of the PS/nZVI catalytic cylinder system. The possible mechanisms of PS activation by nZVI encapsulated L-cys catalytic cylinder were supposed. Homogeneous Fenton reaction and heterogeneous catalysis on the nZVI surface are two co-existence mechanisms in the PS/nZVI encapsulated L-cys catalytic cylinder system. The findings of this study provide new insights into the mechanism of nZVI encapsulated L-cys catalytic cylinder activating PS, showing its potential applications for the remediation of groundwater.

Funder

the National Key R&D Program of China

the National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3