Controlled field studies on soil aquifer treatment in a constructed coastal sandfill

Author:

Chua Lloyd H. C.1,Leong Melvin C. M.1,Lo Edmond Y. M.1,Reinhard Martin2,Robertson Alexander P.2,Lim T. T.1,Shuy E. B.1,Tan S. K.1

Affiliation:

1. Division of Environmental and Water Resources Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore

2. Department of Civil and Environmental Engineering, Terman Engineering Centre, Stanford University, Stanford, CA 94305-4020 USA

Abstract

A controlled artificial recharge experiment was conducted to investigate the effect of soil aquifer treatment during percolation of secondary and tertiary (ultrafiltered) treated wastewater through the shallow vadoze zone of a newly constructed coastal sandfill. The sandfill is a reclaimed land constructed from marine sand dredged from the seabed. To obtain 1-D flow, a stainless steel column was driven to a depth of 2.5 m, penetrating the phreatic surface. Wastewater was percolated through the column under fully-saturated and unsaturated conditions. Infiltration rates, dissolved organic carbon (DOC) and ultra-violet absorption (UVA) were monitored. The wastewaters were recharged at similar infiltration rates of approximately 5.5 m/day and 3.5 m/day under fully-saturated and unsaturated conditions, respectively. In both cases, clogging occurred 40 days after the start of recharge, under saturated conditions. For secondary treated wastewater, DOC concentration (mg/l) reduced by 28% and 13% under unsaturated and saturated conditions, respectively. The corresponding UVA reduction was 19.4% and 14.1%. Similar reductions in DOC were observed for the tertiary treated wastewater; however, the reduction in UVA was higher; 28% and 22% under unsaturated and saturated conditions, respectively. On an mass removal (mg/m2 DOC) basis, DOC reduction appeared to be more significant under unsaturated conditions. This is attributed to the presence of interstitial oxygen.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3