Evaluation of removal efficiency of human antibiotics in wastewater treatment plants in Bangkok, Thailand

Author:

Sinthuchai Donwichai1,Boontanon Suwanna Kitpati1,Boontanon Narin2,Polprasert Chongrak3

Affiliation:

1. Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, 25/25 Phutthamonthon 4 Rd, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand

2. Faculty of Environment and Resource Studies, Mahidol University, 999 Phutthamonthon 4 Rd, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand

3. Department of Civil Engineering, Faculty of Engineering, Thammasat University, 99 Moo 18 Phaholyothin Rd, Khlongluang, Pathumthani 12120, Thailand

Abstract

This study aimed to investigate the antibiotic concentration at each stage of treatment and to evaluate the removal efficiency of antibiotics in different types of secondary and advanced treatment, as well as the effects of the location of their discharge points on the occurrence of antibiotics in surface water. Eight target antibiotics and four hospital wastewater treatment plants in Bangkok with different conventional and advanced treatment options were investigated. Antibiotics were extracted by solid phase extraction and analysed by high performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS). The antibiotic with the highest concentration at influent was cefazolin at 13,166 ng/L, while the antibiotic with the highest concentration at effluent was sulfamethoxazole at 1,499 ng/L. The removal efficiency of antibiotics from lowest to highest was sulfamethoxazole, piperacillin, clarithromycin, metronidazole, dicloxacillin, ciprofloxacin, cefazolin, and cefalexin. The adopted conventional treatment systems could not completely remove all antibiotics from wastewater. However, using advanced treatments or disinfection units such as chlorination and UV could increase the antibiotic removal efficiency. Chlorination was more effective than UV, ciprofloxacin and sulfamethoxazole concentration fluctuated during the treatment process, and sulfamethoxazole was the most difficult to remove. Both these antibiotics should be studied further regarding their contamination in sludge and suitable treatment options for their removal.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3