Application of self-organising maps and multi-layer perceptron-artificial neural networks for streamflow and water level forecasting in data-poor catchments: the case of the Lower Shire floodplain, Malawi

Author:

Mwale F. D.1,Adeloye A. J.1,Rustum R.2

Affiliation:

1. School of Built Environment, Heriot Watt University, Riccarton, Edinburgh EH14 4AS, UK

2. School of Built Environment, Heriot Watt University, Dubai Campus, United Arab Emirates

Abstract

With a paradigm shift from flood protection to flood risk management that emphasises learning to live with the floods, flood forecasting and warning have received more attention in recent times. However, for developing countries, the lack of adequate and good quality data to support traditional hydrological modelling for flood forecasting and warning poses a big challenge. While there has been increasing attention worldwide towards data-driven models, their application in developing countries has been limited. A combination of self-organising maps (SOM) and multi-layer perceptron artificial neural networks (MLP-ANN) is applied to the Lower Shire floodplain of Malawi for flow and water level forecasting. The SOM was used to extract features from the raw data, which then formed the basis of infilling the gap-riddled data to provide more complete and much longer records that enhanced predictions. The MLP-ANN was used for the forecasting, using alternately the SOM features and the infilled raw data. Very satisfactory forecasts were obtained with the latter for up to 2-day lead time, with both the Nash–Sutcliffe index and coefficient of correlation being in excess of 0.9. When SOM features were used, however, the lead time for very satisfactory forecasts increased to 5 days.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3