Affiliation:
1. a Department of Civil Engineering, Central University of Jharkhand, Ranchi 835205, India
2. b Central India Hydrology Regional Centre, National Institute of Hydrology, WALMI Campus, Kolar Road, Bhopal, Madhya Pradesh 462015, India
Abstract
ABSTRACT
Climate change heightens India's agricultural risks, particularly in nations like India heavily reliant on farming. Previous studies focused on Coupled Model Intercomparison Project Phase (CMIP3) and (CMIP5) scenarios for large river basins, but the heightened risk of local climate changes poses a significant threat to smaller basins, notably affecting crops. This study investigates the spatiotemporal dynamics of climate change impacts on paddy crop irrigation in India's Lower Mahanadi Basin, utilizing the latest general circulation models (GCMs) from the CMIP6, focuses on two emission scenarios, SSP585 and SSP370. Thirteen models were analysed, top six were selected based on statistical criteria like PBIAS, NSE, R2, RSR, and RMSE. Models project climate changes for near- (2025–2050), mid- (2051–2075), and far-future (2076–2100) periods against a baseline (1981–2014), investigating spatiotemporal variations in rainfall, temperature, and irrigation water requirements (IWRs) in the region. In both scenarios, future mean seasonal rainfall is expected to increase compared with the baseline. SSP370 projects a 23.7% rise in minimum rainfall, while maximum rainfall varies by 11.5%. SSP585, on the other hand, projects a 9.53% decrease in maximum IWR and a 28.9% increase in maximum rainfall compared with the baseline. Both scenarios anticipate a 3–4 °C temperature increase in the far-future.