Warming of water temperature in spring and nutrient release from sediment in a shallow eutrophic lake

Author:

Shinohara Ryuichiro1ORCID,Tsuchiya Kenji1,Kohzu Ayato1

Affiliation:

1. National Institute for Environmental Studies, 16–2 Onogawa, Tsukuba, Ibaraki 305–8506, Japan

Abstract

Abstract We investigated whether recent springtime water temperature increases in a shallow eutrophic lake affected bottom sediment temperature and fluxes of ammonia (NH4+) and phosphate (PO43−) from the sediment. We conducted a lake-wide survey of Lake Kasumigaura, Japan, and analyzed the relationship between water temperature increases in spring and NH4+ and PO43− release fluxes. We also developed a numerical model to analyze how water temperature increase affects sediment temperature. Water temperature in May increased during 2010–2019 at a rate of 1.8–3.2 °C decade−1. The numerical simulation results showed that the water temperature increase was accompanied by a sediment temperature increase from a minimum of 18.3 °C in 2011 to a maximum of 21.6 °C in 2015. Despite the substantial difference in the observed sediment temperature (2.9 °C), no significant differences in NH4+ and PO43− fluxes in May between 2013/2014 and 2015 were found. These results suggest that both water and sediment temperatures are increasing in Lake Kasumigaura in spring, but it is unclear whether this warming has affected NH4+ and PO43− releases from the sediment. However, because a nonlinear response to sediment temperature was observed, future springtime warming may accelerate NH4+ and PO43− releases.

Funder

Japan Society for the Promotion of Science

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3