Water management for industrial development, energy conservation, and subjective attitudes: a comprehensive risk-oriented model to explore the tolerance of unbalanced allocation problem

Author:

Yu Yangping1,Xie Yulei1ORCID,Ji Ling2,Zhang Jinbo3,Cai Yanpeng1,Yang Zhifeng1

Affiliation:

1. Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China

2. School of Economics and Management, Beijing University of Technology, Beijing 100124, China

3. College of Environmental Science and Engineering, Peking University, Beijing 100871, China

Abstract

Abstract In this study, a new concept concerning comprehensive characteristics of water resources utilization as an index for risk modeling within the water allocation management model is proposed to explore the tolerance of unbalanced allocation problem under the water–energy nexus. The model is integrated with interval two-stage stochastic programming for reflecting system uncertainties. These uncertainties are associated with the industrial production feature and the decision-making process. With respect to the water–energy nexus, energy proposed is mainly focused on the consumption intensity of water purification and transportation from different water sources. The developed model is applied for industrial water resources allocation management in Henan province, China. Multiple scenarios related to disparate energy consumption control and the comprehensive risk levels are simulated to obtain a reasonable trade-off among system profit, comprehensive risk, and energy consumption. The results indicated that the strict comprehensive risk management or energy consumption control measures could cause damage to system benefit owing to decreasing the flexibility of industrial water resources distributions, and the preliminary energy consumption or the comprehensive risk control would be beneficial to moderate the conflict between industrial sectors and water resources, and accelerate industrial structure transformation in the future.

Funder

national natural science foundation of china

program for guangdong introducing innovative and entrepreneurial teams

natural science foundation of beijing municipality

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3