An introductory guide to gas exchange analysis of photosynthesis and its application to plant phenotyping and precision irrigation to enhance water use efficiency

Author:

Haworth Matthew1,Marino Giovanni1,Centritto Mauro1

Affiliation:

1. The National Research Council of Italy – Trees and Timber Institute (CNR-IVALSA), Via Madonna del Piano 10, Sesto Fiorentino, 50019 Florence, Italy

Abstract

Abstract Leaf gas exchange is central to the analysis of photosynthetic processes and the development of more productive, water efficient and stress tolerant crops. This has led to a rapid expansion in the use of commercial plant photosynthesis systems which combine infra-red gas analysis and chlorophyll fluorescence (Chl-Flr) capabilities. The present review provides an introduction to the principles, common sources of error, basic measurements and protocols when using these plant photosynthesis systems. We summarise techniques to characterise the physiology of light harvesting, photosynthetic capacity and rates of respiration in the light and dark. The underlying concepts and calculation of mesophyll conductance of CO2 from the intercellular air-space to the carboxylation site within chloroplasts using leaf gas exchange and Chl-Flr are introduced. The analysis of stomatal kinetic responses is also presented, and its significance in terms of stomatal physiological control of photosynthesis that determines plant carbon and water efficiency in response to short-term variations in environmental conditions. These techniques can be utilised in the identification of the irrigation technique most suited to a particular crop, scheduling of water application in precision irrigation, and phenotyping of crops for growth under conditions of drought, temperature extremes, elevated [CO2] or exposure to pollutants.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3