Improvement of separation efficiency and production capacity of a hydrocyclone

Author:

Wu Lei1,Long Tianyu1,Lu Xuping1

Affiliation:

1. Key Laboratory of the Three Gorges Reservoir Area Ecological Environment, Ministry of Education, Chongqing University, Chongqing 400045, China and College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China

Abstract

The improvement of separation efficiency (SE) and production capacity of a hydrocyclone by introducing a newly-designed structure is a significant challenge when applying Reynolds Averaged Navier–Stokes (RANS) turbulence modeling techniques. This study aims to solve the problem that the high content of fine sands in summer in the Chongqing section of the Yangtze River means that it can not be directly taken as the water source for a heat pump system, and also to reduce the energy consumption of the hydrocyclone through the improvement of its structure design. In this research, the RANS approach was applied to simulate the three-dimensional flow field of the hydrocyclone, a Reynolds stress model (RSM) was introduced and used to make the RANS equation close. In the modeling study of the separation mechanism of the hydrocyclone, the impacts of operating parameters and structure parameters on the hydrocyclone SE were studied using RANS methods based on the commercial software FLUENT. Consequently, a new-style hydrocyclone with inclined inlet and ramp board and central solid rod was designed to enhance the SE according to previous numerical modeling results. Under the conditions of the optimal inlet velocity of 15 m s−1 for the new structure and with a sand volume fraction of 10%, the SE of the new structure can be increased near to 60% for 0.004 mm sand particles, and the overflow production capacity can be enhanced to 20 m3 h−1. These data are required both for evaluating the potential use of the hydrocyclone for the separation of sands from water and for studying the new structure which may be important in practical applications to reduce energy consumption, and these comparisons will assist hydrocyclone designers in choosing appropriate turbulence models and structures, and benefit future modeling research.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3