Lipid hydrolysis monitoring in wastewater treatment: proof-of-concept for a high throughput vegetable oil emulsion based assay

Author:

Van Gaelen P.1,Springael D.2,Smets I.1

Affiliation:

1. Bio- and Chemical Systems Technology, Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F box 2424, B-3001 Leuven, Belgium

2. Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium

Abstract

Abstract Lipids are one of the main organic components in industrial and municipal wastewaters. Lipid hydrolysis is the first step in the biological conversion process and requires a close contact between lipid emulsion droplets and microbial hydrolytic enzymes. Adequate lipid hydrolysis monitoring is crucial to obtain mechanistic knowledge on lipid hydrolysis in response to changes in the process conditions and to improve the overall lipid conversion efficiency in aerobic and anaerobic wastewater treatment systems. We set out to develop a high-throughput lipid hydrolysis monitoring method based on vegetable oil model substrates and fluorescent quantification of product formation by exploiting the interaction with Rhodamine B. Olive oil and soybean oil emulsions were prepared with a high interfacial area and acceptable emulsion stability. The method was easy to apply and allowed to obtain detailed kinetic data over a time course of several hours for up to 16 samples in parallel. A proof-of-concept was obtained with a commercial enzyme, Amano lipase, but remains to be provided for wastewater treatment sludge samples. The findings of this study pave the way for further method development in lipid hydrolysis monitoring.

Funder

Research Foundation - Flanders

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3