Drought evolution in the Haihe River basin during 1960–2020 and the correlation with global warming, sunspots, and atmospheric circulation indices

Author:

Ling Minhua1,Guo Xiaomin1,Zhang Yanyan1,Yu Lili2,Xia Qinyuan3

Affiliation:

1. a School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China

2. b General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources, Beijing 100032, China

3. c Bureau of Hydrology and Water Resources in Henan Province, Zhengzhou 450003, China

Abstract

Abstract The Haihe River basin is the main grain production base and the highland of economic strategic development in China. Based on daily meteorological data during 1960–2020, the characteristics of drought evolution in the Haihe River basin were analyzed by the standardized precipitation evapotranspiration index (SPEI). Pearson correlation method and cross-wavelet analysis were used to explore the correlation between the SPEI and climate factors (global warming, sunspots, and atmospheric circulation indices). Global warming has led to a trend of increasing drought in the basin, and there is an obvious zonality in the change of the trend, with the strongest impact on the central region of the basin (112°E–120°E, 38°N–41°N). The SPEI was negatively correlated with the number of sunspots. The more sunspots there were, the more severe the drought in the basin. The drought was most susceptible to the El Niño-Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation (AMO), followed by the Arctic Oscillation (AO) and the Pacific Decadal Oscillation (PDO). The North Atlantic Oscillation (NAO), the Pacific North America index (PNA), and the Western Pacific index (WP) were the least associated with the drought in the basin.

Funder

Special Project for Research and Development in Key areas of Guangdong Province

Natural Science Foundation of Xiamen City

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3