Aspect and soil textural controls on snowmelt runoff on forested Boreal Plain hillslopes

Author:

Redding Todd1,Devito Kevin1

Affiliation:

1. Department of Biological Science, University of Alberta, CW 405 Biological Sciences Centre, Edmonton, Alberta, Canada, T6G 2E9

Abstract

Plot studies were conducted on a jack pine forest with sandy soil and aspen forests with sandy and loam soils to examine the controls of slope aspect, soil texture and fall soil moisture content on near-surface snowmelt runoff and infiltration. It was hypothesized that near-surface runoff would be greater from north-facing slopes on loam soils with increased fall soil moisture content. Fall soil moisture had no measurable effect on spring snowmelt runoff. Infiltration of snowmelt dominated (drainage coefficients 53–100%, median 87%) over near-surface runoff (runoff coefficients 1–65%, median 7%) for most plots. Runoff was related to concrete frost at the mineral soil surface. In contrast to the processes hypothesized, south-facing hillslopes with sandy soils generated greater runoff than north-facing slopes or sites with finer-textured soils. These results were due to greater concrete frost development resulting from periodic spring snowmelt and re-freezing in the upper soil. South-facing hillslopes with sandy soils featured lower canopy cover, allowing greater solar radiation to reach the snow surface which led to the formation of concrete frost and faster melt rates resulting in near-surface runoff. Where hillslopes are connected to receiving surface waters by continuous concrete frost, snowmelt runoff at the watershed scale may be enhanced.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3